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We enquire into the consequences of the nonuniqueness of the factorizability 
of a quantum mechanical Hamiltonian in one dimension. This leads to a hierarchy 
of potentials, a particular class of which is endowed with the energy spectrum 
of the harmonic oscillator. 

The algebraic properties of the factorization method have been well 
explored (Lahiri et al., 1987). These include their connection (Gendenshtein 
and Krive, 1985) to supersymmetric quantum mechanics to generate partner 
potentials from a superpotential. The factorization method has also been 
widely used to determine the energy spectrum of exactly solvable potentials 
in quantum mechanics. However, an aspect of this scheme particularly 
worth noting (Mielnik, 1984; Kumar, 1987) concerns the uniqueness of the 
factorized expression of a quantum mechanical Hamiltonian. 

Consider the following Hamiltonian, corresponding to the harmonic 
oscillator potential: 

H = - � 8 9 1 8 9  2 (1). 

Typically, one can resolve H into such factors as 

H + �89 = [ 2 - 1 / 2 ( d / d x  -t- x ) [ 2 - 1 / 2 ( - d / d x  + x )  (2) 

and introduce the corresponding annihilation and creation operators a 
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and a*, 

a = 2-1/2(d/dx + x), 

Thus, H may be written as 

with a and a* satisfying 

a*= 2 - ' / 2 ( - d /  dx + x) 

H = aa* -�89 

[a, a*] = 1 
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(3) 

(4) 

(5) 

o~(x) = d /  dx (ln 0o) (9) 

The function a(x)  is related to the potential V(x)  through 

V ( x )  = � 8 9  + a 2 - 1) (10) 
For the harmonic oscillator, a(x )  is simply x and (10) becomes V(x)  = �89 2. 

The nonuniqueness of the representations of a and a* stems from the 
fact that nothing prevents us from modifying (8) to 

b =2-1/2[d /dx+f l (x )]  

b* = 2-1/2[-d/  dx + [3 (x)] (11) 

where /3 is another arbitrary function of x # a. The reason is that if we 
express H as 

H + 1 = 2 - t / 2 ( d / d x  + [3 ) 2 - t / 2 ( _ d / d x  + [3 ) ( 12 )  

with H still given by (7), a nontrivial solution of/3 emerges as 

[3(x) = a(x)  + ~ (x )  (13) 

where 

a* = 2-1 /2[ -d /dx  + oz (x)] (8) 

Further, 

H a * = a * ( H + l ) ,  H a = a ( H - 1 )  (6) 

The ground-state eigenfunction of H, namely 0o = Coe -x~-/2 (Co is a 
constant) may be obtained from the condition aOo = 0, while the subsequent 
eigenfunctions 0n (n = 1, 2, 3 , . . . )  are determined using 0~ = C,(a*)nOo �9 
The latter yields the usual Hermite polynomials. 

In general, the factorization of the Hamiltonian corresponding to any 
arbitrary potential V(x),  namely 

H = _ l  d2/dx2+ V(x)  (7) 

means that a and a* are expressible in terms of the ground-state wave 
function 0o: 

a = 2-1/2[ d~ dx + a (x)] 
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where 

�9 (x) = e, o2(const+ f &oZdx) 1 (14) 

is nonvanishing. However, to obtain ~ ( x )  in closed form, q*o must be an 
inverse-square integrable function. 

It is to be stressed that unlike a and a*, the operators b and b* do 
not commute to give a number  

[b, b*]= dfl/  dx (15) 

One consequence of this is that while bb* is still H+ �89  i.e., 

bb* = aa* = H +�89 (16) 

the inverted product b*b is not a constant, 

b*b= H - ( d f i / d x - � 8 9  (17) 

For the case a ( x )  = x, we can express b*b as (Mielnik, 1984; Kumar, 
1987) 

b ' b -  ' 1 - H  - ~  (18) 

where 

and 

H ' =  -�89 d2/ dx2 + V(X) (19) 

fXo )-1] 
- - - - -  e -~2 c o n s t +  e-yady (20) V ( x ) =  2 dx t .  \ Jo 

In this way we essentially define a new Hamiltonian H '  whose spectrum is 
identical with that of the harmonic oscillator, but whose potential is different. 
To see this, note that 

H'b* = (b*b+�89 = b*(bb*+�89 = b*(H + 1) (21) 

Denoting the eigenfunctions of H '  as qb n = b*O._l,  with 4'. being those of 
(1), it follows in a straightforward way that 

H'Cb. : H'b*6n-i  = b*(H + 1)q*. l =  b*(n +�89162 = (n +�89 

n = l , 2 , . . .  (22) 

What happens if we modify (12) still further? Let us set 

c = 2 - 1 / 2 [ d / d x + y ( x ) ] ,  c*=2- ' / 2 [d / c l x+y(x ) ]  (23) 

where 

y(x)  = f l (x)  + X(x)  = o~(x) + C~(x) + X(X) (24) 
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The function X(x) may be determined easily by setting 

H +�89 = 2- ' /2 (d /dx  + y )2 -1 /2 ( -d /dx  + 3') 

one gets 

(25) 

Further, 

which implies that 

Ao= Co e x p [ f f  y ( y ) d y ]  

H.ewAo = (c*c -�89 da /dx )ko  

= ( d a / d x  -�89 

The eigenvalue is �89 for the harmonic oscillator potential. 

(34) 

(35) 

X(X)=tflo2e-I2qbdX[const+f (Oo2e-I2~dX) dx l  1 (26) 

One can evaluate the commutator [c, c*] from 

[c, c*] = d / d x  (a +CP+X) (27) 

Consequently, 

c*c = H +�89 - d / d x  (ee + ~ + X) (28) 

In other words, one can construct a new Hamiltonian 

H.ew = c*c - �89 + da /  dx = H - d /  dx (cP + X) (29) 

having a potential V ( x ) -  d O p / d x - d x / d x  and which satisfies 

H.ewC* = c*( cc* + da / d x -  �89 = e*( H + da / dx ) (30) 

Also, if 0. (n = 0, 1, 2 , . . . )  are the eigenvectors of the harmonic oscillator 
as before, then the A. = e*qJ. 1 satisfy 

H.~wA. = H n e w C * & . - I  

$ 1 =c ( n - ~ + d a / d x ) r  

= ( n - � 8 9  d a / d x ) a .  (31) 

However, it is to be noted that the coefficient of a .  on the right-hand side 
of (31) is not a number. Nevertheless, when a(x )  = x, (31) gives the energy 
eigenvalue of the harmonic oscillator. 

The orthogonality of a.  is obvious: 

(Aj, Ak) = 0 for j # k  (32) 

The vector ?to is obtained from 

CA o = 2-1/2(d/dx + y)ao = 0 (33) 
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To de termine  y (x )  in (23), we must  have a knowledge  of  the ground-  
state wave  function.  To illustrate this, we consider  a typical  form for  ~o, 

~b0(x) = coshC(x) (36) 

where  c ( > 0 )  is a parameter .  Such a form has acquired some impor tance  
in super symmet r i c  quan tum mechanics  (Gendensh te in  and Krive, 1985; 
Gendensh te in ,  1983), due to its connect ion to the shape- invar iant  potentials.  
Using (36), we can immedia te ly  write down c~(x): 

N o w  

e~(x) = d/dx In ~bo = c t anh(x )  (37) 

I dx/ffJ2= I ( 1 - z 2 )  c-1 dz 

=/~_~ (say) (38) 

where z = tanh(x) .  Thus,  

do(x) = cosh-2C(x)(const  + It_l)  -1 (39) 

where  Ic_~ satisfies the recurrence relat ion 

L. = z(1 -z2)2/(2c+ 1 ) + 2 e L  1 / (2c+  1) ('40) 

a long with 

Io=z, I~=�89 (41) 

In this way dO(x) becomes  known.  Once dO(x) is de termined,  dO(x) may  be 
readily inferred f rom (26). For  instance,  let us set c = 1. This cor responds  to 

~bo = cosh x, a (x) = tanh x (42) 

As a result, 

dO(x) = sech2x (const  + t a n h  x) -~ (43) 

Per forming  now the necessary integrations,  we obtain an explicit form for 
x(x) 

X(x) = sech2x (A + t a n h  x)(1 + B tanh x)] -1 (44) 

where A and B are constants.  
To conclude,  we note that  we can, in general,  carry out factor izat ion 

of  the Hami l ton ian  in the fo rm 

H +�89 = �89 + "rl(x)][-d/dx + r /(x)]  (45) 

to any extent  we please,  

7/(x) = c~ (x) + dO(x) + X (x) + . . .  (46) 
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Of course, for this the ground-state wave function of the system is to be 
known and the functions ~ (x ) ,  X(X) , . . . ,  must satisfy certain conditions 
of integrability. Also, whatever the forms of ~(x) ,  g ( x ) ,  �9 � 9  since relations 
such as those given by (31) and (35) are dependent only on ~(x),  they 
remain unaffected. 
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